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Abstract
An anisotropic damage model capable of predicting the response of normal and high 

strength concretes is presented in this study. The model utilizes a concrete appropriate 
effective compliance matrix in constructing the constitutive equations. Three parameters α, β
and γ were used in the effective compliance matrix. α and β are introduced to model the 
different behaviour of concrete in tension and compression while the third parameter γ was 
introduced to account for volumetric change. The concept of multiple surfaces i.e. limit 
fracture surface, loading function surface and bounding surface, defined in strain-energy 
release space, is used to define the evolution of damage. After calibration for various 
strengths of concrete, ranging from 27.6 MPa to 120 MPa, the predictive capability of the 
proposed elasto-damage model for uniaxial and biaxial stress paths was investigated for 
uniaxial compression, biaxial compression, uniaxial tension and tension-compression.  The 
simulative capability of the model to capture the phenomenological behaviour of concrete 
such as strain softening, stiffness degradation, biaxial strength envelope, volumetric 
dilatation, different behaviour in tension and compression, and gain in strength under 
increasing confinement is reflected. The predicted results correlate well with the available 
experimental data. 

1. INTRODUCTION 
In recent years considerable research has been focused on modelling of mechanical 

behaviour of concrete.  The mechanical behaviour of concrete is very complicated and the 
possible variations in material characteristics have not been modelled effectively under 
various theoretical frameworks.  Typical trends in concrete behaviour include: stiffness 
degradation, strain softening, volumetric dilatation, different behaviour in tension and 
compression, and gain in strength under increasing confinement. 

The theory of continuum damage mechanics (CDM) has been used extensively to model 
the progressive degradation of the mechanical properties of materials caused by 
microcracking.  Concrete contains numerous microcracks, even before the application of the 
external loads.  Under applied loading, the initiation of new microcracks and the growth of 
existing microcracks contribute to the observed nonlinear behaviour in concrete, ultimately 
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causing the failure.  The existence of microcracks and their propagation cause what is termed 
as “damage” to the concrete. 

The concept of bounding surface, initially used in plasticity for metals, was applied to 
concrete by Suaris et al. [1], Voyiadjis and Abu-Lebdeh [2], Yazdani and Karnawat [3].  It 
was modified and used successfully to predict most of the essential features of normal and 
high strength concrete by Khan et al. [4]. 

The present study is aimed towards improving predictive capabilities of constitutive model 
for normal and high strength concrete proposed by Khan et al. [4]. This is achieved by 
defining critical strain energy release rate Rc as a function of initial modulus of elasticity, Eo,
uniaxial compressive strength, cf ′ , and parameters α and β as a function of Eo, cf ′ , and 

normalized strain invariants, 
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J .  The constitutive relations and damage growth are 

derived using the approach presented by the authors in their previous work.  The proposed 
mode is simple, captures the constitutive behaviour of concrete and can be directly 
implemented into a general-purpose finite element code with relative ease. 

2. THEORETICAL PRELIMINARIES 

2.1 Effective Compliance Matrix 
Following compliance matrix as postulated by Khan et al. [4] is used in the study 
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in which the thermodynamic constraint requirement Eiνji = Ejνij has been ensured. 

2.2 Bounding Surface 
In order to construct a rational model accounting for damage growth, concepts are 

borrowed from incremental theory of plasticity in general and the bounding surface plasticity 
model in particular.  Plasticity bounding surface models, requires definition of multiple 
surfaces in stress space.  However, the fundamental surfaces in the present work are best 
described in strain-energy release space, as proposed by Suaris et al. [1]. 
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where, f is the loading function surface, F is the bounding surface, fo is a limit fracture 
surface [3].  The loading function surface (f) is defined in terms of thermodynamic-force 
conjugates, Ri, where, 

),( iij
i

iR ωσ
∂ω

Λ∂ρ= (3)

where ρΛ is the strain energy density and iR  is an image point on F = 0 associated with a 
given point Ri on f = 0 defined by a mapping rule 

ii RbR =
2/1)/( iic RRRb =

(4)

with the mapping parameter b ranging from an initial value of ∞ to a limiting value of 1 on 
growth of loading surface to coalesce with bounding surface.  Rc, critical strain energy release 
rate, is a parameter of the model and is calibrated to the standard uniaxial compression test, 
and is suggested to be a function of uniaxial compressive strength and modulus of elasticity.  
Ro defines the initiation of microcracking which occurs at about 40% of the peak stress as 
indicated by experimental results, and it varies with the compressive strength of concrete as: 

oco EfR /)4.0(2 2′β= (5)

Damage is hypothesized to accumulate at levels of strain energy release rate resulting in 
the loading surface (f) traversing the limit fracture surface (fo) and rupture in the damage sense 
is said to occur when f grows large enough to coalesce with the bounding surface F fixed in 
the Ri space.    

The parameters α and β in the effective compliance matrix control the movement of the 
loading surface which describes the onset of damage or failure, i.e. higher values of α and β
means faster movement of loading surface and hence lower peak stress, as it will reach the 
bounding surface much earlier than with lower values of α and β.  This makes the model 
flexible enough to accommodate normal as well as high strengths of concrete.

2.3 Damage Evolution  
The damage growth is determined from the loading surface, f, as 
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Where dλ is defined as 
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Introducing damage modulus H = 
p

k
ω∂
∂ , that can be measured experimentally in a uniaxial 

compression test and the same form is assumed for more general stress paths. In the present 
work, H is expressed as a function of the distance between the loading and the bounding 
surface, given by 

δ−δ
δ

=
in

D
H (8)

where D = 2.65 is a constant and < > are Macaulay brackets that set the quantity within it 
to zero if the value is negative.  The normalized distance δ between the loading and bounding 
surfaces is given by 

b
11 −=δ (9)

δ = δin corresponds to Ro when the loading surface first crosses the limit fracture surface.  

3. INCREMENTAL STRESS STRAIN RELATIONS 
The incremental stress-strain law is given by 
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where dλ is defined in Equation (7). Equation (11) is useful in a stress control testing. 
The incremental stress-strain law for strain control testing is given by 
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where dλ is defined in Equation (12).  
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Incremental stress-strain relationships for specific cases of uniaxial compression, uniaxial 
tension and equal biaxial compression can be found elsewhere [4]. 
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4. DETERMINATION OF REGRESSION COEFFICIENTS 

The parameters α, β and γ are functions of Eo, cf ′ , and 
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principal and deviatoric strain, respectively. The suggested forms of α, β and γ are as follows: 
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These parameters were calibrated by regressing against experimental σ−ε data for 
different cf ′ .  The range of cf ′  used in regression varies from 27.6 MPa (4,000 psi) to 120 
MPa (17,400 psi), and is listed in Table 1. Details of regression can be found elsewhere [6].

Final form of Rc, αi’s, βi’s and γ is as follows: 

ococc EfEfR ×′××′×= 11-8.22324E+07-6.15E-04-7.0843E-8.2451            (14)

• α for (σ1 > 0, σ2 < 0) 

cooc fEEf ′×××′×+= 10-3.057E-06-4.060E+03-2.348E+013.324E-0α (15)

ococ EfEf ×′××′×+= 10-5.570E-06-1.992E+03-4.589E+012.701E-1α

ococ EfEf ××××−+= //
2 10-6.776E+06-6.053E-035.375E-015.540Eα

ococ EfEf ×′××′×+= 10-3.262E+06-1.845E-03-2.641E-011.989E3α

• α for (σ1 > 0 , σ2 ≥ 0) 

ococ EfEf ×′××′×= 10-3.55154E+06-2.5423E-03-2.928157E-26.5563α (16)

• α = 0 for (σ1< 0, σ2 < 0) 

• β for (σ1 < 0, σ2 < 0) 

cooc fEEf ′×××′×= 12-8.6393E+07-1.2277E-05-6.5957E-01-9.9351E0β (17)

ococ EfEf ×′××′×= 12-1.5719E08-1.5177E+05-1.3190E+01-1.5283E-1β

ococ EfEf ××××= //
2 12-3.2310E-08-7.2680E+05-2.1187E+01-5.0825E-β

ococ EfEf ×′××′×+= 12-1.7450E+08-3.8623E-05--1.1523E01-2.7165E3β



International RILEM Symposium on Concrete Modelling – CONMOD’08 
26-28 May 2008, Delft, The Netherlands 

582

• β for (σ1 > 0, σ2 < 0) 

ococ EfEf ×′××−′×−= 12-6.022E+08-7.71E054.69309-0.643665β (18)

• β = 0 for (σ1 > 0, σ2 > 0) 

• γ (σ1 < 0, σ2 < 0) 

ococ EfEf ×′××′×= 11-1.28434E+07-2.903E-4-1.1826E-3.1344γ (19)

    6. RESULTS 
Predicted results are verified for uniaxial and biaxial loading conditions by comparing 

them with the available experimental and analytical results.  A strain control program is used 
for plotting curves for predicted stress-strain response, volumetric dilatation and apparent 
Poisson’s ratio for biaxial loading conditions. 

Three different concretes (concrete A, cf ′  = 27.6 MPa (4,000 psi), concrete B, cf ′  =  65 
MPa (9,434 psi) and concrete C, cf ′  = 120 MPa (17,416 psi) were selected for comparison of 
predicted results of the model. For the case of uniaxial compression, comparison with 
experimental results and analytical results of Khan et al. [4] shows that the predicted curves 
for concretes A and B (Fig. 1) are stiffer and less ductile than the experimental curves i.e. the 
predicted peak stress compares quite well but the strains are somewhat on the lesser side but 
are softer than the analytical results of Khan et al. [4].  This can be attributed to the absence of 
plastic strains.  Additional plastic strains will shift the curves to the right, making it 
comparable with the experimental values.  Curve for concrete C (Fig. 1), is in close agreement 
with the experimental and analytical curves both in terms of peak stress and peak strain.  It is 
evident from Figure 1 that the model can capture the increasing brittleness and decreasing 
ductility with the increase in uniaxial compressive strength quite effectively. 

Figures 1 - 3 reflect the predictive capability of the model to capture the phenomenological 
behaviour of volumetric dilatation.  In Figure 1, curves for lateral strains are shown in which 
the increase in lateral strains as the stress reaches the peak stress is clearly visible with curves 
from present study showing more smmothness.  This increase in lateral strains is due to the 
dramatic increase in apparent Poisson’s ratio (Figure 2), which results in the change of sign of 
dilatancy (volumetric strain) as shown in Figure 3.  It can be seen from the figure that 
concrete always exhibits this phenomenon under biaxial compression irrespective of the stress 
paths.  Figure 2 represents the change in Poisson’s ratio for all the three concretes.  The 
curves are consistent with the observed behaviour as the change in Poisson’s ratio is more 
evident near the peak stress and are smoother than the ones predicted by Khan et al. [4]. 

For the case of biaxial compression, comparison with the experimental results of Kupfer et 
al. [7] (Figure 4) indicates that the predicted peak stress envelope is in close agreement with 
the experimental peak stress. 

It should be noted that this improvement in results was obtained by defining Rc as a 
function of uniaxial compressive strength and initial modulus of elasticity. Since it is already 
shown that this rather simple approach is capable of capturing almost all the observed 
phenomenological trends of concrete, incorporation of more three dimensional data will yield 
a more rigorous model capable of predicting multiaxial behaviour of concrete. 
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Figure 1: Stress-strain curves for uniaxial compression 

Figure 2: Apparent Poisson’s Ratio under uniaxial compression 

Figure 3: Volumetric dilatation of concrete under biaxial compression 
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Figure 4: Biaxial strength interaction curve for concrete 

7. CONCLUSIONS 

− An elasto-damage bounding surface model developed by Khan et al. [4] for monotonic 
behaviour of normal and high strength concrete is improved in this paper. A generalized 
compliance matrix in the principal coordinate system proposed by Khan et al. [4] is 
used.  Critical strain energy release rate Rc is defined as a function of elastic modulus 
and uniaxial compressive strength which improved overall performance of the model.  

− Results presented in the paper demonstrate that the present model predicts the behaviour 
of concrete under biaxial monotonic loadings adequately and captures almost all the 
essential features of concrete including the volumetric dilatation.  

− In order to make the model general and applicable to real three dimensional problems, 
work is in progress and more triaxial data will be incorporated in determining the 
regression coefficients. 
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